UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2023

CC9-MATHEMATICS

Ring Theory and Linear Algebra-I

(Revised Syllabus 2023 / Old Syllabus 2018)

The figures in the margin indicate full marks.

GROUP-A

Answer any four questions from the following
$3 \times 4=12$
3 isomorphic.
2. Find a basis and dimension of the subspace S of the vector space $M_{2}(\mathbb{R})$ over \mathbb{R}, where $S=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathbb{R}): a+b=0\right\}$.
3. Find a generator for each of the ideals $4 \mathbb{Z}+10 \mathbb{Z}$ and $8 \mathbb{Z} \cap 12 \mathbb{Z}$ of \mathbb{Z}.
4. Is the ring of matrices $\left\{\left(\begin{array}{cc}a & b \\ 2 b & a\end{array}\right): a, b \in \mathbb{R}\right\}$ a field? Justify your answer.
5. Let V be a vector space with $\{\alpha, \beta, \gamma\}$ as a basis. Prove that the set $\{\alpha+\beta+\gamma, \beta+\gamma, \gamma\}$ is also a basis of V.
6. Find a linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that

$$
\operatorname{Im} T=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y-z=0\right\}
$$

GROUP-B

Answer any four questions from the following
7. The matrix of a linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ relative to the ordered basis $\{(-1,1,1),(1,-1,1),(1,1,-1)\}$ of \mathbb{R}^{3} is $\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 3 \\ 3 & 3 & 1\end{array}\right)$. Find T. Also find the matrix of T relative to the standard basis of \mathbb{R}^{3}.

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHCC9/Revised \& Old/2023

8. Find all the units in the ring \mathbb{Z}_{10}. Prove that these units form a cyclic group under multiplication.
9. State and prove third isomorphism theorem on rings.
10. Determine the linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ which maps the basis vectors $3+3$ $(1,0,0),(0,1,0),(0,0,1)$ of \mathbb{R}^{3} to the vectors $(1,1),(2,3),(3,2)$ respectively. Prove that T is onto but not one-one.
11.(a) Prove that every Boolean ring is commutative. Is the converse true? Justify your answer. A ring is Boolean if its every element is idempotent.
(b) Let S and T be two ideals of a ring R. Prove that $S \cup T$ is an ideal of R iff either $S \subseteq T$ or $T \subseteq S$.
12.(a) In \mathbb{R}^{2}, consider $\alpha=(3,1)$ and $\beta=(2,-1)$. Determine $L\{\alpha, \beta\}$ and show that $L\{\alpha, \beta\}=\mathbb{R}^{2}$.
(b) Prove that the set S of all 2×2 symmetric matrices with real entries is a subspace of $M_{2}(\mathbb{R})$.

GROUP-C

Answer any two questions from the following

13.(a) Prove that in a commutative ring R with identity, a proper ideal P of R is a prime ideal iff R / P is an integral domain. Use this result to prove that $\langle x\rangle$ is a prime ideal of $\mathbb{Z}[x]$.
(b) Give an example of each of the following:
(i) An infinite ring R (which is not a field) with char $R=2$.
(ii) An infinite field F with $\operatorname{char} F=3$.

Here char S denotes the characteristic of the ring S.
(c) Prove that the characteristic of a Boolean ring is 2 .
14.(a) Consider the subring R of $M_{2}(\mathbb{Z})$; where $R=\left\{\left(\begin{array}{ll}a & b \\ b & a\end{array}\right): a, b \in \mathbb{Z}\right\}$.

Let $\phi: R \rightarrow \mathbb{Z}$ be a map, defined by $\phi\left(\left(\begin{array}{ll}a & b \\ b & a\end{array}\right)\right)=a-b$ for all $\left(\begin{array}{ll}a & b \\ b & a\end{array}\right) \in R$.
(i) Show that ϕ is a homomorphism.
(ii) Determine $\operatorname{ker} \phi$.
(iii) Show that $R / \operatorname{ker} \phi$ is isomorphic to \mathbb{Z}.
(iv) Is $\operatorname{ker} \phi$ a prime ideal of R ? Justify.
(b) Let $(R,+, \cdot)$ be a ring where $(R,+)$ is a cyclic group. Prove that R is a commutative ring. Use this result to prove that the rings of order $2,3,5,6,7$ are commutative rings.
15.(a) Show that T is non-singular and determine T^{-1} where $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear mapping defined by:

$$
T(x, y, z)=(x-y, x+2 y, y+3 z) \text { for all }(x, y, z) \in \mathbb{R}^{3} .
$$

(b) Suppose a linear mapping $T: V \rightarrow W$ maps the ordered basis $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ of $V(\mathbb{R})$ as

$$
T\left(\alpha_{1}\right)=\beta_{1}, T\left(\alpha_{2}\right)=\beta_{1}+\beta_{2}, T\left(\alpha_{3}\right)=\beta_{1}+\beta_{2}+\beta_{3}
$$

where $\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$ is an ordered basis of $W(\mathbb{R})$. Find the matrix of T^{-1} relative to the same chosen ordered bases.
(c) Prove that the vector space \mathbb{R} over \mathbb{Q} is infinite dimensional.
16.(a) Let $W_{1}=L\{(1,-2,1),(2,3,5)\}$ and $W_{2}=L\{(1,-2,0),(3,-3,0)\}$ then show that W_{1} and W_{2} are subspaces of \mathbb{R}^{3}. Determine $\operatorname{dim} W_{1}, \operatorname{dim} W_{2}$ and $\operatorname{dim}\left(W_{1}+W_{2}\right)$.
(b) Find the dimension of $\operatorname{ker} T$ where $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is the linear transformation, given by $T(x, y, z)=(x+z, y+z)$ for all $(x, y, z) \in \mathbb{R}^{3}$.
\qquad

